Biometric Authentication like Fingerprints has become an integral part of the modern technology for authentication and verification of users. It is pervasive in more ways than most of us are aware of. However, these fingerprint images deteriorate in quality if the fingers are dirty, wet, injured or when sensors malfunction. Therefore, extricating the original fingerprint by removing the noise and inpainting it to restructure the image is crucial for its authentication. Hence, this paper proposes a deep learning approach to address these issues using Generative (GAN) and Segmentation models. Qualitative and Quantitative comparison has been done between pix2pixGAN and cycleGAN (generative models) as well as U-net (segmentation model). To train the model, we created our own dataset NFD - Noisy Fingerprint Dataset meticulously with different backgrounds along with scratches in some images to make it more realistic and robust. In our research, the u-net model performed better than the GAN networks
翻译:指纹等生物测定验证已成为用户认证和核查现代技术的一个组成部分。 它比我们多数人所知道的要普遍得多。 但是,如果手指脏、湿、受伤或传感器失灵,这些指纹图像的质量就会恶化。 因此,通过去除噪音来解析原始指纹,并绘制指纹以调整图像结构,对于认证至关重要。 因此,本文件提出一种深层次的学习方法,以利用基因(GAN)和分区模型解决这些问题。 在我们的研究中,在像素2pixGAN和循环GAN(基因模型)以及U-net(分类模型)之间进行了定性和定量的比较。 为了培训模型,我们以不同背景和一些图像的刮痕仔细地创建了我们自己的数据集NFD - 噪音指纹数据库,以便使其更加现实和有力。 在我们的研究中, 网络模型比GAN网络运行得更好。