Neural Radiance Fields (NeRFs) are emerging as a ubiquitous scene representation that allows for novel view synthesis. Increasingly, NeRFs will be shareable with other people. Before sharing a NeRF, though, it might be desirable to remove personal information or unsightly objects. Such removal is not easily achieved with the current NeRF editing frameworks. We propose a framework to remove objects from a NeRF representation created from an RGB-D sequence. Our NeRF inpainting method leverages recent work in 2D image inpainting and is guided by a user-provided mask. Our algorithm is underpinned by a confidence based view selection procedure. It chooses which of the individual 2D inpainted images to use in the creation of the NeRF, so that the resulting inpainted NeRF is 3D consistent. We show that our method for NeRF editing is effective for synthesizing plausible inpaintings in a multi-view coherent manner. We validate our approach using a new and still-challenging dataset for the task of NeRF inpainting.
翻译:神经辐射场( NeRFs) 正在作为一个无处不在的场景演示形式出现, 使得可以进行新的视图合成。 NeRFs 将越来越多地与其他人共享。 不过, 在共享 NERF 之前, 最好删除个人信息或非视觉对象。 目前的 NERF 编辑框架不易实现这种删除。 我们提议了一个框架, 将物体从 RGB- D 序列中创建的 NERF 代表形式中移除。 我们的 NERF 绘制方法利用了 2D 图像的近期涂色工作, 并以用户提供的遮罩为指导。 我们的算法以基于信任的视图选择程序为基础。 它选择了用于创建 NERF 的2D 个人画成图像中的哪个, 从而导致的 NERF 是 3D 一致的。 我们显示, 我们的 NRF 编辑方法对于以多视角一致的方式合成合理的内写法是有效的。 我们使用新的和不断挑战的数据设置来验证我们的方法。