Although substance use is known to be associated with cognitive decline during ageing, its direct influence on the central nervous system remains unclear. In this study, we aim to investigate the potential influence of substance use on accelerated brain ageing by estimating the mean potential brain age gap (BAG) index, the difference between brain age and actual age, under different alcohol and tobacco intake in a large UK Biobank (UKB) cohort with extensive phenomic data reflecting a comprehensive life-style profile. We face two major challenges: (1) a large number of phenomic variables as potential confounders and (2) a small proportion of participants with complete phenomic data. To address these challenges, we first develop a new ensemble learning framework to establish robust estimation of mean potential outcome in the presence of many confounders. We then construct a data integration step to borrow information from larger than 90 percentages UKB participants with incomplete phenomic data to improve efficiency. Extensive numerical studies demonstrate the superiority of our method over competing methods, in terms of smaller estimation bias and variability. Our analysis results reveal significant effects for both frequent alcohol drinking and tobacco smoking by accelerating brain ageing in 0.24 and 0.32 years, respectively.
翻译:虽然人们知道,在老龄化期间,药物使用与认知下降有关,但对中枢神经系统的直接影响仍然不明确。在本研究中,我们的目标是通过估计潜在大脑年龄差距(BAG)指数,调查物质使用对加速脑老化的潜在影响;在联合王国一个大型生物库(UKB)中,在不同的酒精和烟草摄入量之间,在不同的酒精和烟草摄入量之间,大脑年龄与实际年龄之间的差异,拥有广泛的反映全面生活方式的体力学数据。我们面临两大挑战:(1)作为潜在混凝土的众多人种变数,以及(2)拥有完整体力数据的一小部分参与者。为了应对这些挑战,我们首先开发一个新的共同学习框架,以便在许多混居者在场的情况下,对潜在潜在结果进行强有力的估计。然后我们建立一个数据整合步骤,从90多的UKB参与者那里借用信息,这些参与者的素材数据不全,以提高效率。我们的广泛数字研究表明,我们的方法优于竞争方法,从更小的偏差和变异性来看。我们的分析结果显示,在0.24年和0.32年中,通过加快大脑老化的速度,对经常饮酒和吸烟和吸烟产生重大影响。</s>