We introduce an image based algorithmic tool for analyzing multi-component shapes here. Due to the generic concept of multi-component shapes, our method can be applied to the analysis of a wide spectrum of applications where real objects are analyzed based on their shapes - i.e. on their corresponded black and white images. The method allocates a number to a shape, herein called a multi-component shapes measure. This number/measure is invariant with respect to affine transformations and is established based on the theoretical frame developed in this paper. In addition, the method is easy to implement and is robust (e.g. with respect to noise). We provide two small but illustrative examples related to aerial image analysis and galaxy image analysis. Also, we provide some synthetic examples for a better understanding of the measure behavior.
翻译:我们在此引入一个基于图像的算法工具, 用于分析多构件形状。 由于多构件形状的通用概念, 我们的方法可以应用于分析一系列广泛的应用, 即根据真实物体的形状( 即其对应的黑白图像) 进行分析。 方法将数字分配到一个形状, 这里称为多构件形状测量。 这个数字/ 计量法对于方形变形是无差异的, 并且是根据本文件所开发的理论框架建立的。 此外, 这个方法很容易执行, 并且很健全( 例如噪音)。 我们提供了两个小但具有说明性的例子, 涉及航空图像分析和星系图像分析。 另外, 我们为更好地了解测量行为提供了一些合成例子。