The traditional approaches to computerized tomography (CT) depend on the samples of Radon transform at multiple angles. In optics, the real time imaging requires the reconstruction of an object by the samples of Radon transform at a \emph{single angle} (SA). Driven by this and motivated by the connection between Bin Han's construction of wavelet frames (e.g \cite{Han1}) and Radon transform, in refinableshift-invariant spaces (SISs) we investigate the SA-Radon sample based reconstruction problem. We have two main theorems. The fist main theorem states that, any compactly supported function in a SIS generated by a general refinable function can be determined by its Radon samples at the designed angle. Motivated by the extensive application of positive definite (PD) functions to interpolation of scattered data, we also investigate the SA reconstruction problem in a class of (refinable) box-spline generated SISs. Thanks to the PD property of the Radon transform of such spline, our second main theorem states that, the reconstruction of compactly supported functions in these spline generated SISs can be achieved by the Radon samples at a \emph{generic angle}. Numerical simulation is conducted to check the result.
翻译:计算机化断层学(CT) 的传统方法取决于在多个角度上的雷达变异的样本。 在光学中,实时成像要求用雷达变异的样本重建一个物体,在\ emph{sing角度} (SA) (SA) 。 受此驱动,并受Bin Han建造波板(例如\ cite{Han1}) 和Radon变异(在可再确定易变空间(ISIS)中)之间联系的驱动。 我们调查了SA- Radon的样本重建问题。 我们有两个主要理论。 拳头主理论指出, 由一般可修正功能变异成的雷达变异的样本在SIS中产生的任何得到紧凑支持的功能都可以由设计角度的 Radon 样品确定。 由对分散数据的正确定(PD) 功能的广泛应用, 我们还在一系列(可修正的) 方框中调查了SAAISE的重建问题。 感谢Radon变异系的 PD属性, 我们的第二大主理论 表示, 通过这些模型的模拟模型可以支持这些SIS 。