We introduce Network Augmentation (NetAug), a new training method for improving the performance of tiny neural networks. Existing regularization techniques (e.g., data augmentation, dropout) have shown much success on large neural networks by adding noise to overcome over-fitting. However, we found these techniques hurt the performance of tiny neural networks. We argue that training tiny models are different from large models: rather than augmenting the data, we should augment the model, since tiny models tend to suffer from under-fitting rather than over-fitting due to limited capacity. To alleviate this issue, NetAug augments the network (reverse dropout) instead of inserting noise into the dataset or the network. It puts the tiny model into larger models and encourages it to work as a sub-model of larger models to get extra supervision, in addition to functioning as an independent model. At test time, only the tiny model is used for inference, incurring zero inference overhead. We demonstrate the effectiveness of NetAug on image classification and object detection. NetAug consistently improves the performance of tiny models, achieving up to 2.2% accuracy improvement on ImageNet. On object detection, achieving the same level of performance, NetAug requires 41% fewer MACs on Pascal VOC and 38% fewer MACs on COCO than the baseline.
翻译:我们引入了网络增强(NetAug),这是改善微小神经网络性能的一种新的培训方法。现有的正规化技术(例如数据增强、退出)通过增加噪音来克服过度装配,在大型神经网络上表现出了很大的成功。然而,我们发现这些技术伤害了小型神经网络的性能。我们认为,培训微小模型与大型模型不同:我们不应该增加数据,而应该扩大模型,因为由于能力有限,小模型往往有不完善而不是过度装配的问题。为了缓解这一问题,NetAug将微小模型的性能提升(反退出),而不是在数据集或网络中插入噪音。它把微小模型放到更大的模型中,并鼓励它作为更大的模型的子模型来工作,以便获得额外的监督,同时作为一个独立模型发挥作用。在试验期间,只有小模型用于推论,导致零推断管理。我们展示了NetAug在图像分类和对象探测方面的有效性。NetAug不断改进小模型的性能,在图像网络上达到2.2%的精确度改进,在图像网络上达到2.2%的精确度改进。在目标上,需要更少的PMACA的绩效减少。