In this article, we introduce a Gegenbauer autoregressive tempered fractionally integrated moving average (GARTFIMA) process. We work on the spectral density and autocovariance function for the introduced process. The parameter estimation is done using the empirical spectral density with the help of the nonlinear least square technique and the Whittle likelihood estimation technique. The performance of the proposed estimation techniques is assessed on simulated data. Further, the introduced process is shown to better model the real-world data in comparison to other time series models.
翻译:在本篇文章中,我们引入了Gegenbauer 自动递减式微小集成移动平均(GARTFIMA)进程。我们致力于为引入的过程开发光谱密度和自动变量功能。参数估算是在非线性最小平方技术和惠特尔概率估算技术的帮助下使用实验性光谱密度进行的。在模拟数据的基础上评估了拟议估算技术的性能。此外,还展示了引入的这一程序,以便与其他时间序列模型相比,更好地模拟真实世界数据。