Minimization of cortical prediction errors has been considered a key computational goal of the cerebral cortex underlying perception, action and learning. However, it is still unclear how the cortex should form and use information about uncertainty in this process of prediction error minimization. Here we derive neural dynamics that minimize prediction errors under the assumption that cortical areas must not only predict the activity in other areas and sensory streams, but also jointly estimate the precision of their predictions. This results in a dynamic modulatory balancing of cortical streams based on context-dependent precision estimates. Moreover, the theory predicts the existence of cortical second-order errors, comparing estimated and actual precision, propagated through the cortical hierarchy alongside classical prediction errors. These second-order errors are used to learn weights of synapses responsible for precision estimation through an error-correcting synaptic learning rule. Finally, we propose a detailed mapping of the theory to cortical circuitry.
翻译:暂无翻译