In this paper, we tackle the problem of selecting the optimal model for a given structured pattern classification dataset. In this context, a model can be understood as a classifier and a hyperparameter configuration. The proposed meta-learning approach purely relies on machine learning and involves four major steps. Firstly, we present a concise collection of 62 meta-features that address the problem of information cancellation when aggregation measure values involving positive and negative measurements. Secondly, we describe two different approaches for synthetic data generation intending to enlarge the training data. Thirdly, we fit a set of pre-defined classification models for each classification problem while optimizing their hyperparameters using grid search. The goal is to create a meta-dataset such that each row denotes a multilabel instance describing a specific problem. The features of these meta-instances denote the statistical properties of the generated datasets, while the labels encode the grid search results as binary vectors such that best-performing models are positively labeled. Finally, we tackle the model selection problem with several multilabel classifiers, including a Convolutional Neural Network designed to handle tabular data. The simulation results show that our meta-learning approach can correctly predict an optimal model for 91% of the synthetic datasets and for 87% of the real-world datasets. Furthermore, we noticed that most meta-classifiers produced better results when using our meta-features. Overall, our proposal differs from other meta-learning approaches since it tackles the algorithm selection and hyperparameter tuning problems in a single step. Toward the end, we perform a feature importance analysis to determine which statistical features drive the model selection mechanism.
翻译:在本文中, 我们处理为特定结构化模式分类数据集选择最佳模型的问题。 在这方面, 一个模型可以被理解为一个分类器和超参数配置。 拟议的元学习方法纯粹依靠机器学习, 涉及四个主要步骤。 首先, 我们简要地收集了62个元特点, 解决了当涉及正和负测量的综合计量值时信息取消的问题。 第二, 我们描述了旨在扩大培训数据的合成数据生成的两种不同方法。 第三, 我们为每个分类问题配置了一套预定义的分类模型, 同时利用网格搜索优化它们的超参数。 目标是创建一个元数据集, 使每行的元数据集都表示一个描述具体问题的多标签实例。 首先, 这些元数据集的特性反映了生成数据集的统计属性, 而将网格搜索结果编码为二进制矢量, 以正面标注最佳模型。 最后, 我们用多个多标签分类分类处理模型选择问题, 包括我们设计用来处理表格数据的进化神经网络。 目标是创建一个元数据集, 显示每个行的元数据定位显示一个描述性模型重要性的多点, 。 模拟结果显示我们自 91 以来, 的模型的元数据模型的预测结果,,, 预测了我们用的是, 正确地测测测算了我们的数据