An important tool in algorithm design is the ability to build algorithms from other algorithms that run as subroutines. In the case of quantum algorithms, a subroutine may be called on a superposition of different inputs, which complicates things. For example, a classical algorithm that calls a subroutine $Q$ times, where the average probability of querying the subroutine on input $i$ is $p_i$, and the cost of the subroutine on input $i$ is $T_i$, incurs expected cost $Q\sum_i p_i E[T_i]$ from all subroutine queries. While this statement is obvious for classical algorithms, for quantum algorithms, it is much less so, since naively, if we run a quantum subroutine on a superposition of inputs, we need to wait for all branches of the superposition to terminate before we can apply the next operation. We nonetheless show an analogous quantum statement (*): If $q_i$ is the average query weight on $i$ over all queries, the cost from all quantum subroutine queries is $Q\sum_i q_i E[T_i]$. Here the query weight on $i$ for a particular query is the probability of measuring $i$ in the input register if we were to measure right before the query. We prove this result using the technique of multidimensional quantum walks, recently introduced in arXiv:2208.13492. We present a more general version of their quantum walk edge composition result, which yields variable-time quantum walks, generalizing variable-time quantum search, by, for example, replacing the update cost with $\sqrt{\sum_{u,v}\pi_u P_{u,v} E[T_{u,v}^2]}$, where $T_{u,v}$ is the cost to move from vertex $u$ to vertex $v$. The same technique that allows us to compose quantum subroutines in quantum walks can also be used to compose in any quantum algorithm, which is how we prove (*).


翻译:算法设计中的一个重要工具是能够从其他以子路程运行的多层次算法中建立算法。 在量子算法中,一个子路程可能需要使用不同输入的叠加位置,这会使事情复杂化。例如,一个叫子路程的古典算法,它调用一个子路程$Q乘数。 在那里,对输入的子路程进行查询的平均概率是$p_iv美元,投入的子路程成本是$t_i美元,对于所有亚路程查询来说,一个亚路程可能需要花费$_sum_i_i_i_i_i_i_i_i$。对于所有古典算算法来说,对于量程的运算来说,它就更少了,如果我们在应用下一个操作之前,一个相似的量表说明(*$q_i_i_i_i_i_i_alia_i_i_i_i_i_i_i_loria_i_i_i_i_i_i_tral_tral_ral_ral_ral_ration_ral_ration_i_i_i_i_tral_i_i_i_tral_tral_i_ exxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
71+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月1日
Arxiv
0+阅读 · 2022年11月1日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员