Non-parametric tests based on permutation, rotation or sign-flipping are examples of group-invariance tests. These tests test invariance of the null distribution under a set of transformations that has a group structure, in the algebraic sense. Such groups are often huge, which makes it computationally infeasible to test using the entire group. Hence, it is standard practice to test using a randomly sampled set of transformations from the group. This random sample still needs to be substantial to obtain good power and replicability. We improve upon the standard practice by using a well-designed subgroup of transformations instead of a random sample. The resulting subgroup-invariance test is still exact, as invariance under a group implies invariance under its subgroups. We illustrate this in a generalized location model and obtain fully replicable tests based the same number of transformations. We prove novel consistency results, which show that a well-designed subgroup-invariance test is consistent for lower signal-to-noise ratios than a test based on a random sample. For the special case of a normal location model and a particular design of the subgroup, we show that the power improvement is equivalent to the power difference between a Monte Carlo $Z$-test and a Monte Carlo $t$-test.
翻译:基于变异、旋转或符号反翻的非参数测试是群件反常测试的例子。 这些测试测试在一组变异结构下对空分布进行无效测试, 这些变异结构具有组结构, 具有代数意义。 这些组通常非常巨大, 使得它无法用整个组进行计算测试。 因此, 使用随机抽样的一组组群变异测试是一种标准做法。 这个随机抽样仍然需要大量量才能获得良好的功率和可复制性。 我们使用一个设计良好的变异分组而不是随机抽样来改进标准做法。 由此产生的次分组反常测试仍然精确, 正如一个组的变异意味着其分组的反常一样。 我们用一个通用位置模型来说明这一点, 并获得基于相同变异数的完全可复制的测试。 我们证明新的一致性结果, 显示一个设计良好的子组变异性测试与一个随机抽样相比, 信号- 信号- 频率比一个测试一致。 对于一个普通值的变异分组的变异性测试来说, 一个普通值模型和一个等值的变差点, 我们显示一个等值的变数- 美元的变数- 的变数- 的变数分组的变数 。