Power is an important aspect of experimental design, because it allows researchers to understand the chance of detecting causal effects if they exist. It is common to specify a desired level of power, and then compute the sample size necessary to obtain that level of power; thus, power calculations help determine how experiments are conducted in practice. Power and sample size calculations are readily available for completely randomized experiments; however, there can be many benefits to using other experimental designs. For example, in recent years it has been established that rerandomized designs, where subjects are randomized until a prespecified level of covariate balance is obtained, increase the precision of causal effect estimators. This work establishes the statistical power of rerandomized treatment-control experiments, thereby allowing for sample size calculators. Our theoretical results also clarify how power and sample size are affected by treatment effect heterogeneity, a quantity that is often ignored in power analyses. Via simulation, we confirm our theoretical results and find that rerandomization can lead to substantial sample size reductions; e.g., in many realistic scenarios, rerandomization can lead to a 25% or even 50% reduction in sample size for a fixed level of power, compared to complete randomization. Power and sample size calculators based on our results are in the R package rerandPower on CRAN.


翻译:动力是实验设计的一个重要方面,因为它使研究人员能够理解在存在因果关系的情况下发现这种因果关系的可能性。 通常的做法是指定一个理想的功率水平,然后计算获得这种功率所需的样本规模; 因此, 电力计算有助于确定实际中如何进行实验。 电力和样本规模的计算很容易为完全随机化的实验提供; 但是,使用其他实验设计有许多好处。 例如,近年来已经确定,重新调整的设计,在获得预定的共变平衡水平之前,对实验对象进行随机调整,提高因果关系估测器的精确度。 这项工作建立了重新随机化治疗控制实验的统计能力,从而允许样品规模的计算。 我们的理论结果还澄清了电力和样本规模如何受到治疗效应的异质性影响,而这种数量在电力分析中常常被忽视。 虚拟,我们证实了我们的理论结果,并发现重新调整可以导致大量样本规模的缩小; 例如,在许多现实的假设中,重新调整后, 因果关系可以导致25%或甚至50%的试测器规模的样本规模的递减幅度。 在固定的RAN级的样品规模上, 我们的试算的样品级的机级的大小为25 %。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Warped Dynamic Linear Models for Time Series of Counts
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员