Multimodal learning has achieved great successes in many scenarios. Compared with unimodal learning, it can effectively combine the information from different modalities to improve the performance of learning tasks. In reality, the multimodal data may have missing modalities due to various reasons, such as sensor failure and data transmission error. In previous works, the information of the modality-missing data has not been well exploited. To address this problem, we propose an efficient approach based on maximum likelihood estimation to incorporate the knowledge in the modality-missing data. Specifically, we design a likelihood function to characterize the conditional distribution of the modality-complete data and the modality-missing data, which is theoretically optimal. Moreover, we develop a generalized form of the softmax function to effectively implement maximum likelihood estimation in an end-to-end manner. Such training strategy guarantees the computability of our algorithm capably. Finally, we conduct a series of experiments on real-world multimodal datasets. Our results demonstrate the effectiveness of the proposed approach, even when 95% of the training data has missing modality.


翻译:多模式学习在许多设想中取得了巨大成功。 与单模式学习相比,它可以有效地将不同模式的信息结合起来,以改善学习任务的业绩。 事实上,多式联运数据可能由于传感器故障和数据传输错误等各种原因而缺少模式。 在以往的著作中,模式缺失数据的信息没有得到充分利用。为了解决这一问题,我们建议了基于最大可能性的高效方法,将知识纳入模式缺失数据。具体地说,我们设计一种可能性功能,以说明模式完整数据和模式流出数据有条件分布的特性,这是理论上最理想的。此外,我们开发了软体功能的普遍形式,以有效采用端到端方式进行最大可能性估算。这种培训战略保证了我们算法的兼容性。最后,我们针对现实世界的多式联运数据集进行了一系列实验。我们的结果证明了拟议方法的有效性,即使95%的培训数据缺乏模式。

1
下载
关闭预览

相关内容

在统计学中,最大似然估计(maximum likelihood estimation, MLE)是通过最大化似然函数估计概率分布参数的一种方法,使观测数据在假设的统计模型下最有可能。参数空间中使似然函数最大化的点称为最大似然估计。最大似然逻辑既直观又灵活,因此该方法已成为统计推断的主要手段。
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2021年4月21日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员