In this paper we apply the previously introduced approximation method based on the ANOVA (analysis of variance) decomposition and Grouped Transformations to synthetic and real data. The advantage of this method is the interpretability of the approximation, i.e., the ability to rank the importance of the attribute interactions or the variable couplings. Moreover, we are able to generate an attribute ranking to identify unimportant variables and reduce the dimensionality of the problem. We compare the method to other approaches on publicly available benchmark datasets.
翻译:在本文中,我们采用了以前根据ANOVA(差异分析)分解和组合变异法采用的近似法,将其应用于合成数据和实际数据。这种方法的优点是近似法的可解释性,即能够对属性相互作用或可变组合的重要性进行分级。此外,我们还能够产生一个属性等级,以确定无关紧要的变量并减少问题的维度。我们比较了该方法与其他关于公开的基准数据集的方法。