Articles in high-impact journals are, on average, more frequently cited. But are they cited more often because those articles are somehow more "citable"? Or are they cited more often simply because they are published in a high-impact journal? Although some evidence suggests the latter, the causal relationship is not clear. We here compare citations of preprints to citations of the published version to uncover the causal mechanism. We build on an earlier model of citation dynamics to infer the causal effect of journals on citations. We find that high-impact journals select articles that tend to attract more citations. At the same time, we find that high-impact journals augment the citation rate of published articles. Our results yield a deeper understanding of the role of journals in the research system. The use of journal metrics in research evaluation has been increasingly criticized in recent years and article-level citations are sometimes suggested as an alternative. Our results show that removing impact factors from evaluation does not negate the influence of journals. This insight has important implications for changing practices of research evaluation.


翻译:平均而言,在高影响期刊中,文章被引用的次数更多。但是,这些文章被引用的次数更多了,因为那些文章更“可传播性”? 或者,这些文章被引用的次数更多了,只是因为它们发表在有影响力的期刊上?虽然有些证据表明后者的存在,但因果关系并不明确。我们在这里将预印的引文与已出版版本的引文进行比较,以发现因果关系机制。我们以早期的引用动态模型为基础,推断期刊引文对引文的因果关系。我们发现,高影响期刊选择了往往吸引更多引文的文章。与此同时,我们发现,高影响期刊增加了发表文章的引文率。我们的结果加深了对期刊在研究系统中作用的理解。近年来,在研究评估中使用期刊指标的做法受到越来越多的批评,有时提出文章级引用作为一种替代办法。我们的结果表明,从评估中消除影响因素并不否定期刊的影响。这种洞察对改变研究评估做法有重要的影响。

0
下载
关闭预览

相关内容

数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2020年12月10日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
8+阅读 · 2018年3月17日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员