Symbol-pair codes were proposed for the application in high density storage systems, where it is not possible to read individual symbols. Yaakobi, Bruck and Siegel proved that the minimum pair-distance of binary linear cyclic codes satisfies $d_2 \geq \lceil 3d_H/2 \rceil$ and introduced $b$-symbol metric codes in 2016. In this paper covering codes in $b$-symbol metrics are considered. Some examples are given to show that the Delsarte bound and the Norse bound for covering codes in the Hamming metric are not true for covering codes in the pair metric. We give the redundancy bound on covering radius of linear codes in the $b$-symbol metric and give some optimal codes attaining this bound. Then we prove that there is no perfect linear symbol-pair code with the minimum pair distance $7$ and there is no perfect $b$-symbol metric code if $b\geq \frac{n+1}{2}$. Moreover a lot of cyclic and algebraic-geometric codes are proved non-perfect in the $b$-symbol metric. The covering radius of the Reed-Solomon code in the $b$-symbol metric is determined. As an application the generalized Singleton bound on the sizes of list-decodable $b$-symbol metric codes is also presented. Then an upper bound on lengths of general MDS symbol-pair codes is proved.
翻译:在高密度储存系统中,提出了用于高密度储存系统中应用的符号代码。 Yaakobi、Bruck和Siegel证明,双线线性环曲代码的最低配对距离符合$_2\geq\ lceil 3d_H/2\rceil 3d_H/2\rceil 2016年引入了$b$-symbol 标准。本文考虑了包含$b$-symbol 指标的代码。提供了一些实例,以显示含泡度指标中代码的Delsaste约束值和Norse约束值覆盖代码的尺寸。我们给双线性线性线性代码的最小配对范围设定了$2\geq\grc{n+_%2}。我们给出了一些符合此定义的最佳代码。然后我们证明,如果$blegleg=geq=eleglegle=gleglemental-mocal-mocal-ral-restal-ral-ral-mocal-ral-ral-ral-mocal-mocal-mocal-ral-mocal-mocal-lation cal-lation cal-ral-rental-ral-lation cal-lationcisal-lational-lational-lational-moc-lad-lational-lationc-lation-lationc-lex-lationc-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-le-le-lad-lad-lad-lad-lad-lad-le-lad-le-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-le-le-l-