For any finite set $\mathcal{H} = \{H_1,\ldots,H_p\}$ of graphs, a graph is $\mathcal{H}$-subgraph-free if it does not contain any of $H_1,\ldots,H_p$ as a subgraph. Similar to known meta-classifications for the minor and topological minor relations, we give a meta-classification for the subgraph relation. Our framework classifies if problems are "efficiently solvable" or "computationally hard" for $\mathcal{H}$-subgraph-free graphs. The conditions are that the problem should be efficiently solvable on graphs of bounded treewidth, computationally hard on subcubic graphs, and computational hardness is preserved under edge subdivision. We show that all problems satisfying these conditions are efficiently solvable if $\mathcal{H}$ contains a disjoint union of one or more paths and subdivided claws, and are computationally hard otherwise. To illustrate the broad applicability of our framework, we study partitioning, covering and packing problems, network design problems and width parameter problems. We apply the framework to obtain a dichotomy between polynomial-time solvability and NP-completeness. For other problems we obtain a dichotomy between almost-linear-time solvability and having no subquadratic-time algorithm (conditioned on some hardness hypotheses). Along the way we unify and strengthen known results from the literature.


翻译:对于任何限定的 $\ mathcal{H} = $H_ 1,\ldot, H_ p ⁇ $ 图表中, 图表如果不包含任何$H_ 1,\ldots, H_p$, 以子图形式显示, 任何限定的 $mathcal{H} = $H_ 1,\ldots, H_p ⁇ $ 图表中, 图表是$mathcalcal{H} 或“ compendation 硬性” 的, 图表是免费的。 对于图表中不包含任何 $H_ 1,\\\ ldcaldcal{H} 的, 图表是无偏差的, 图表是 $\\ mathalcalcalcal- liformissional deality corrilations, 问题都是有效的。 我们的研究框架中所有满足这些条件的问题都是可以高效的, 如果$\mathcal cal {H} 包含一条或多条路径的不相交的不相交的路径和分解的路径, 和分解的路径, 并进行计算, rodeal deal deal deal deal deal rution rolational roal roal rution robil

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月3日
Arxiv
0+阅读 · 2023年3月1日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2023年3月3日
Arxiv
0+阅读 · 2023年3月1日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员