Recent Vision Transformer~(ViT) models have demonstrated encouraging results across various computer vision tasks, thanks to their competence in modeling long-range dependencies of image patches or tokens via self-attention. These models, however, usually designate the similar receptive fields of each token feature within each layer. Such a constraint inevitably limits the ability of each self-attention layer in capturing multi-scale features, thereby leading to performance degradation in handling images with multiple objects of different scales. To address this issue, we propose a novel and generic strategy, termed shunted self-attention~(SSA), that allows ViTs to model the attentions at hybrid scales per attention layer. The key idea of SSA is to inject heterogeneous receptive field sizes into tokens: before computing the self-attention matrix, it selectively merges tokens to represent larger object features while keeping certain tokens to preserve fine-grained features. This novel merging scheme enables the self-attention to learn relationships between objects with different sizes and simultaneously reduces the token numbers and the computational cost. Extensive experiments across various tasks demonstrate the superiority of SSA. Specifically, the SSA-based transformer achieves 84.0\% Top-1 accuracy and outperforms the state-of-the-art Focal Transformer on ImageNet with only half of the model size and computation cost, and surpasses Focal Transformer by 1.3 mAP on COCO and 2.9 mIOU on ADE20K under similar parameter and computation cost. Code has been released at https://github.com/OliverRensu/Shunted-Transformer.
翻译:最近的视觉变换器~ ( ViT) 模型在计算机各种视觉任务中展示了令人鼓舞的结果, 这是因为它们有能力通过自我注意来模拟图像补丁或符号的远距离依赖性。 但是, 这些模型通常指定每个图层内每个象征性特征的类似可接受字段。 这种限制不可避免地限制了每个自我注意层捕捉多尺度特征的能力, 从而导致在处理图像时使用不同尺度的多个对象的性能退化。 为了解决这个问题, 我们提出了一个新颖和通用的战略, 称为“ 自我观察” (SSA), 使 ViT 能够在每注意层的混合比例上模拟关注。 SSA的主要想法是将可接受字段大小的可接受性化模型输入到符号中: 在计算自我注意矩阵之前, 它有选择地合并表示更大的对象特性, 同时保留某些标记保存微缩缩缩微的特性。 这种新型合并方案使自我观察能够学习不同大小的物体之间的关系, 同时降低象征性数字和计算成本。 在中央轨道内, ASA- AS- OL- AS- AS- AS- AS- AS- AS- AServeralalalalal- laslial ad adal- adal- laveildal sildal 和 Caldalational- sildal- sildalbaldaldalbaldalupaldaldaldaldaldaldaldaldal.