We devise constant-factor approximation algorithms for finding as many disjoint cycles as possible from a certain family of cycles in a given planar or bounded-genus graph. Here disjoint can mean vertex-disjoint or edge-disjoint, and the graph can be undirected or directed. The family of cycles under consideration must satisfy two properties: it must be uncrossable and allow for an oracle access that finds a weight-minimal cycle in that family for given nonnegative edge weights or (in planar graphs) the union of all remaining cycles in that family after deleting a given subset of edges. Our setting generalizes many problems that were studied separately in the past. For example, three families that satisfy the above properties are (i) all cycles in a directed or undirected graph, (ii) all odd cycles in an undirected graph, and (iii) all cycles in an undirected graph that contain precisely one demand edge, where the demand edges form a subset of the edge set. The latter family (iii) corresponds to the classical disjoint paths problem in fully planar and bounded-genus instances. While constant-factor approximation algorithms were known for edge-disjoint paths in such instances, we improve the constant in the planar case and obtain the first such algorithms for vertex-disjoint paths. We also obtain approximate min-max theorems of the Erd\H{o}s--P\'osa type. For example, the minimum feedback vertex set in a planar digraph is at most 12 times the maximum number of vertex-disjoint cycles.


翻译:我们设计了恒定因素近似算法, 以在给定的平面图或捆绑式genus图中从某个周期的组合中找到尽可能多的脱节周期。 这里的脱节可以意味着顶点分解或边缘分解, 图形也可以不定向或定向。 所考虑周期的组合必须满足两个属性 : 它必须是不可交叉的, 并且允许在一个家庭中找到一个重量- 最小周期, 在给定的非负边缘重量或( 在平面图中) 所有剩余周期在删除给定的边缘子组之后的组合。 我们的设置将过去分别研究的许多问题概括化。 例如, 满足上述属性的三个家族是 (一) 定向或非定向图形中的所有循环, (二) 所有奇怪的循环都必须满足两种特性: 它必须是不可交叉的, 并且允许一个非定向的图表中包含一个准确的需求边缘, 需求边缘构成一个子群。 后一个家族(三) 在完全平面图中, 最典型的脱节路径中, 最明显的平面图是我们所知道的平面平面平面图中, 的平面图中, 最常态中, 最常数的平流- 。 同时, 在常态中, 我们的平面图中, 最常变的轨道中, 的轨道中, 也会改进的轨道- 例中, 在常态- 例中, 在常态- 。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员