We study a self-similar solution of the kinetic equation describing weak wave turbulence in Bose-Einstein condensates. This solution presumably corresponds to an asymptotic behavior of a spectrum evolving from a broad class of initial data, and it features a non-equilibrium finite-time condensation of the wave spectrum $n(\omega)$ at the zero frequency $\omega$. The self-similar solution is of the second kind, and it satisfies boundary conditions corresponding to a nonzero constant spectrum (with all its derivative being zero) at $\omega=0$ and a power-law asymptotic $n(\omega) \to \omega^{-x}$ at $\omega \to \infty \;\; x\in \mathbb{R}^+$. Finding it amounts to solving a nonlinear eigenvalue problem, i.e. finding the value $x^*$ of the exponent $x$ for which these two boundary conditions can be satisfied simultaneously. To solve this problem we develop a new high-precision algorithm based on Chebyshev approximations and double exponential formulas for evaluating the collision integral, as well as the iterative techniques for solving the integro-differential equation for the self-similar shape function. This procedures allow to achieve a solution with accuracy $\approx 4.7 \%$ which is realized for $x^* \approx 1.22$.
翻译:我们研究一种自相似的动态方程式解决方案, 描述波斯- Einstein condenates 中的微波波动。 这个方程式大概相当于一个从广泛的初始数据类别演变成的频谱的无线行为, 其特征是波谱非均匀的定时凝结 $n( omega) 美元, 零频率 $\ omega) 美元。 自相似的方程式属于第二种类型, 它符合非零常量频谱( 其衍生值为0) $\omega=0的边界条件( 其衍生值为0) 和电源法无线 $( omega)\\\ omga\\ =xx 美元, 至\ omga\ x} 美元; 它具有一种非均匀的状态, 即找到一个非线性常量频谱频谱( $x$x$x) 的边界频谱( 其所有衍生值为0美元 ), 而这两种边界条件可以同时满足 $( omegaga) $( omegaga) $) = y- ometx syremogratial) ex