Characterizing the privacy degradation over compositions, i.e., privacy accounting, is a fundamental topic in differential privacy (DP) with many applications to differentially private machine learning and federated learning. We propose a unification of recent advances (Renyi DP, privacy profiles, $f$-DP and the PLD formalism) via the characteristic function ($\phi$-function) of a certain ``worst-case'' privacy loss random variable. We show that our approach allows natural adaptive composition like Renyi DP, provides exactly tight privacy accounting like PLD, and can be (often losslessly) converted to privacy profile and $f$-DP, thus providing $(\epsilon,\delta)$-DP guarantees and interpretable tradeoff functions. Algorithmically, we propose an analytical Fourier accountant that represents the complex logarithm of $\phi$-functions symbolically and uses Gaussian quadrature for numerical computation. On several popular DP mechanisms and their subsampled counterparts, we demonstrate the flexibility and tightness of our approach in theory and experiments.
翻译:隐私在构成上的退化,即隐私核算,是不同隐私(DP)中的一个基本主题,有许多应用用于不同的私人机器学习和联合学习。我们提议通过某种“最坏情况”的隐私损失随机变数的特性功能(美元功能),将最近的进展(Renyi DP、隐私简介、美元-DP和PLD形式主义)统一起来。我们表明,我们的方法允许自然适应性组成,如Renyi DP,提供与PLD一样的非常严格的隐私核算,并且可以(通常不亏损地)转换为隐私概况和美元-DP,从而提供$(epsilon,\delta)的美元-DP担保和可解释的折价交易功能。从理论上讲,我们建议用一个分析的Fourier会计,代表美元功能的复杂对数,象征性地使用Gaussian的四边线来进行数字计算。在几个流行的DP机制及其子样板上,我们展示了我们理论和实验方法的灵活性和紧凑。