We study the problem of treasure hunt in a graph by a mobile agent. The nodes in the graph are anonymous and the edges at any node $v$ of degree $deg(v)$ are labeled arbitrarily as $0,1,\ldots, deg(v)-1$. A mobile agent, starting from a node, must find a stationary object, called {\it treasure} that is located on an unknown node at a distance $D$ from its initial position. The agent finds the treasure when it reaches the node where the treasure is present. The {\it time} of treasure hunt is defined as the number of edges the agent visits before it finds the treasure. The agent does not have any prior knowledge about the graph or the position of the treasure. An Oracle, that knows the graph, the initial position of the agent, and the position of the treasure, places some pebbles on the nodes, at most one per node, of the graph to guide the agent towards the treasure. We target to answer the question: what is the fastest possible treasure hunt algorithm regardless of the number of pebbles are placed? We show an algorithm that uses $O(D \log \Delta)$ pebbles to find the treasure in a graph $G$ in time $O(D \log \Delta + \log^3 \Delta)$, where $\Delta$ is the maximum degree of a node in $G$ and $D$ is the distance from the initial position of the agent to the treasure. We show an almost matching lower bound of $\Omega(D \log \Delta)$ on time of the treasure hunt using any number of pebbles.
翻译:我们在一个移动代理商的图表中研究寻宝问题。 图形中的节点是匿名的, 任何节点的边缘都是 $deg( v) 美元, 任何节点的节点是 $1,\ldots, deg(v)-1$。 一个移动代理商, 从节点开始, 必须找到一个固定的物件, 叫做 ~it trecreat} 。 当它到达宝藏所在的节点时, 笔点会找到宝藏。 宝藏狩猎的 时间被定义为 代理商在找到宝藏之前访问的边点数量。 该代理商对图表或宝藏的位置没有任何先前的了解。 一个了解图表、 代理人的初始位置以及宝藏的位置, 在图表的节点上, 最多是 $D $( $D) 的节点上, 用来引导代理人找到宝藏。 我们的目标是回答问题: 最快速的宝藏算算算算法, 无论在什么时候, $D $D 美元 的起始点是多少 。 我们用一个运算 。