Automatically generating radiology reports can improve current clinical practice in diagnostic radiology. On one hand, it can relieve radiologists from the heavy burden of report writing; On the other hand, it can remind radiologists of abnormalities and avoid the misdiagnosis and missed diagnosis. Yet, this task remains a challenging job for data-driven neural networks, due to the serious visual and textual data biases. To this end, we propose a Posterior-and-Prior Knowledge Exploring-and-Distilling approach (PPKED) to imitate the working patterns of radiologists, who will first examine the abnormal regions and assign the disease topic tags to the abnormal regions, and then rely on the years of prior medical knowledge and prior working experience accumulations to write reports. Thus, the PPKED includes three modules: Posterior Knowledge Explorer (PoKE), Prior Knowledge Explorer (PrKE) and Multi-domain Knowledge Distiller (MKD). In detail, PoKE explores the posterior knowledge, which provides explicit abnormal visual regions to alleviate visual data bias; PrKE explores the prior knowledge from the prior medical knowledge graph (medical knowledge) and prior radiology reports (working experience) to alleviate textual data bias. The explored knowledge is distilled by the MKD to generate the final reports. Evaluated on MIMIC-CXR and IU-Xray datasets, our method is able to outperform previous state-of-the-art models on these two datasets.
翻译:自动生成放射学报告可以改善目前诊断放射学的临床实践。 一方面,它可以让放射学家减轻撰写报告的沉重负担;另一方面,它可以提醒放射学家注意异常情况,避免错误诊断和误差诊断。然而,由于严重的视觉和文字数据偏差,这一任务仍然是数据驱动神经网络的一项艰巨任务。 为此,我们提议采用“ 波塞利奥和主要知识探索和蒸馏”方法(PPPKKED)来模仿放射学家的工作模式,他们首先检查异常区域,将疾病专题标记分配给异常区域,然后依靠以往医学知识年数和以往工作经验积累来撰写报告。 因此,PPPKKED包括三个模块:Posideal Knownal Introledge (PrKE) 和多多多面知识探索IKD(MKD) 。 详细来说, PoKESerge 能够探索远端知识,提供明显异常的视觉区域以缓解视觉数据偏差;PrKE探索以往的MIC方法,从先前数据分析方法,从这些以往数据流学系到以往数据流数据流流数据流学,这些前数据流数据流学经验为流数据流数据流数据流、流学、流数据流、流学、流学、流学、流学、流学、流学、流、流学、流学、流学、流学前数据流学、流、流学、流学、流学、流学、流学、流、流学、流学、流学、流、流、流、流、流学、流学、流学、流学、流学、流学、流学、流学、流学、流学、流学、流学、流学、流学、流学、流学、流学、流学、流学、流、流、流、流、流、流、流、流、流、流、流学、流学、流学、流学、流学、流学、流学、流学、流学、流学、流、流、流、流、流、流、流、流、流、流、流、流、流、流学、流学、流学、流学、流学、流学、流学、流、流、流、流、