One of the first application of the recently introduced technique of \emph{flow-augmentation} [Kim et al., STOC 2022] is a fixed-parameter algorithm for the weighted version of \textsc{Directed Feedback Vertex Set}, a landmark problem in parameterized complexity. In this note we explore applicability of flow-augmentation to other weighted graph separation problems parameterized by the size of the cutset. We show the following. -- In weighted undirected graphs \textsc{Multicut} is FPT, both in the edge- and vertex-deletion version. -- The weighted version of \textsc{Group Feedback Vertex Set} is FPT, even with an oracle access to group operations. -- The weighted version of \textsc{Directed Subset Feedback Vertex Set} is FPT. Our study reveals \textsc{Directed Symmetric Multicut} as the next important graph separation problem whose parameterized complexity remains unknown, even in the unweighted setting.
翻译:最近引入的 \ emph{ plow- augment } [Kim 等人, STOC 2022] 技术的第一个应用是 \ textsc{ directive Vertex Set} 的加权版本的固定参数算法,这是参数化复杂度中的一个里程碑问题。 在本说明中, 我们探索了流程加压对根据切片大小参数确定的其他加权图形分隔问题的适用性。 我们显示的是以下。 -- 加权非定向图形 \ textsc{textsc{Multicut} 是边缘和顶端删除版本的FPT。 -- \ textsc{ Group conference Vertex Set} 的加权版本是FPT, 即使有组操作的连接。 -- \ textsc{ dreced Subsetective Vetex Set} 的加权版本是FPT。 我们的研究显示的是, \ textsc{ dreced Symectictycut} 下一个重要的图表分离问题, 即使在未加权设置中, 。