Hardware specialization is becoming a key enabler of energyefficient performance. Future systems will be increasingly heterogeneous, integrating multiple specialized and programmable accelerators, each with different memory demands. Traditionally, communication between accelerators has been inefficient, typically orchestrated through explicit DMA transfers between different address spaces. More recently, industry has proposed unified coherent memory which enables implicit data movement and more data reuse, but often these interfaces limit the coherence flexibility available to heterogeneous systems. This paper demonstrates the benefits of fine-grained coherence specialization for heterogeneous systems. We propose an architecture that enables low-complexity independent specialization of each individual coherence request in heterogeneous workloads by building upon a simple and flexible baseline coherence interface, Spandex. We then describe how to optimize individual memory requests to improve cache reuse and performance-critical memory latency in emerging heterogeneous workloads. Collectively, our techniques enable significant gains, reducing execution time by up to 61% or network traffic by up to 99% while adding minimal complexity to the Spandex protocol.


翻译:硬件专业化正在成为节能性能的关键促进因素。 未来系统将日益多样化, 整合多种专门和可编程的加速器, 每一个系统都有不同的记忆需求。 传统上, 加速器之间的沟通效率一直低下, 通常是在不同地址空间之间通过明确的 DMA 传输进行。 最近, 工业界提出了统一一致的记忆, 从而允许隐含的数据移动和更多的数据再利用, 但是这些界面往往限制了多元系统的一致性灵活性。 本文展示了精细区分的系统一致性专业化的好处。 我们提出了一个结构, 借助一个简单灵活的基线一致性界面Spandex, 使不同工作量中每个个人的一致性要求都能独立实现低复杂性的专业化。 我们然后描述了如何优化个人记忆请求, 以改善缓存再利用和新出现不同工作量中的性能- 关键记忆耐久性。 我们的技术可以共同带来重大收益, 将执行时间降低到61%, 网络流量降低到99%, 同时给Spandex 协议增加最小的复杂度 。

0
下载
关闭预览

相关内容

专知会员服务
18+阅读 · 2020年9月6日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员