Light-sheet fluorescence microscopy (LSFM) is a cutting-edge volumetric imaging technique that allows for three-dimensional imaging of mesoscopic samples with decoupled illumination and detection paths. Although the selective excitation scheme of such a microscope provides intrinsic optical sectioning that minimizes out-of-focus fluorescence background and sample photodamage, it is prone to light absorption and scattering effects, which results in uneven illumination and striping artifacts in the images adversely. To tackle this issue, in this paper, we propose a blind stripe artifact removal algorithm in LSFM, called DeStripe, which combines a self-supervised spatio-spectral graph neural network with unfolded Hessian prior. Specifically, inspired by the desirable properties of Fourier transform in condensing striping information into isolated values in the frequency domain, DeStripe firstly localizes the potentially corrupted Fourier coefficients by exploiting the structural difference between unidirectional stripe artifacts and more isotropic foreground images. Affected Fourier coefficients can then be fed into a graph neural network for recovery, with a Hessian regularization unrolled to further ensure structures in the standard image space are well preserved. Since in realistic, stripe-free LSFM barely exists with a standard image acquisition protocol, DeStripe is equipped with a Self2Self denoising loss term, enabling artifact elimination without access to stripe-free ground truth images. Competitive experimental results demonstrate the efficacy of DeStripe in recovering corrupted biomarkers in LSFM with both synthetic and real stripe artifacts.
翻译:浅表荧光显微镜(LSFM)是一种尖端的体积成像技术(LSFM ), 允许用分解的光化和探测路径对中观样本进行三维成像。 虽然这种显微镜的选择性感应方案提供了内在光学分解, 将焦点外的荧光背景和样本照片损坏最小化, 但很容易受到光吸收和分散效应的影响, 导致图像中不均匀的光化和分解。 为了解决这个问题,我们在本文件中提议在LSFM中采用一个叫做DeStripe的盲条条形艺术品清除算法, 将自我监督的波形光谱光谱光谱图神经网络网络与以前展开的Hesiansian的光谱网络结合起来。 具体地, Fourier的光谱化信息转换为频率域域的孤立值, DeStripreal 首次将潜在的自由的Fourier 系数本地化, 利用单向直线条形图像之间的结构差异, 以及更多直径图像的图解去除图象。, 将自我显示自上不透光谱的系统的平平面的平面的平面图像的平流的平流的平面图, 的平流的平流的平流的S 向的平流的平流的平流的平流的S 向的平流的平流的平流的平面的平面的平面的平面的平面图结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构可以将S 既可以进一步连接结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构的S, 既可以使S 既可以进一步向的S 的S 结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构的S,, 也可以使S 既可以将S 也可以进一步连接的平地结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构