Recently, deep learning enabled the accurate segmentation of various diseases in medical imaging. These performances, however, typically demand large amounts of manual voxel annotations. This tedious process for volumetric data becomes more complex when not all required information is available in a single imaging domain as is the case for PET/CT data. We propose a multimodal interactive segmentation framework that mitigates these issues by combining anatomical and physiological cues from PET/CT data. Our framework utilizes the geodesic distance transform to represent the user annotations and we implement a novel ellipsoid-based user simulation scheme during training. We further propose two annotation interfaces and conduct a user study to estimate their usability. We evaluated our model on the in-domain validation dataset and an unseen PET/CT dataset. We make our code publicly available: https://github.com/verena-hallitschke/pet-ct-annotate.
翻译:最近,深层次的学习使得各种疾病在医学成像中得以准确分解。然而,这些表演通常需要大量的人工 voxel 说明。体积数据的这种繁琐过程,如果并非如PET/CT数据那样,在一个单一成像域中提供所有所需信息,则会变得更加复杂。我们提议了一个多式互动分解框架,通过将PET/CT数据的解剖和生理信号结合起来,减轻这些问题。我们的框架利用大地学距离变换来代表用户说明,我们在培训期间实施了一个新颖的单流用户模拟计划。我们进一步提议了两个注解界面,并进行了用户研究,以估计其可用性。我们评估了我们关于内部验证数据集的模型和一个看不见的PET/CT数据集。我们公布了我们的代码:https://github.com/verena-hallitschke/pet-ct-annotate。