We consider the smallest-area universal covering of planar objects of perimeter 2 (or equivalently closed curves of length 2) allowing translation and discrete rotations. In particular, we show that the solution is an equilateral triangle of height 1 when translation and discrete rotation of $\pi$ are allowed. Our proof is purely geometric and elementary. We also give convex coverings of closed curves of length 2 under translation and discrete rotations of multiples of $\pi/2$ and $2\pi/3$. We show a minimality of the covering for discrete rotation of multiples of $\pi/2$, which is an equilateral triangle of height smaller than 1, and conjecture that the covering is the smallest-area convex covering. Finally, we give the smallest-area convex coverings of all unit segments under translation and discrete rotations $2\pi/k$ for all integers $k\ge 3$.
翻译:我们认为最小区域覆盖范围覆盖范围最小的周边物体2 (或相等的封闭曲线2),允许翻译和离散旋转。 特别是, 我们显示, 当允许翻译和离散旋转$\pi$时, 解决方案是高度1的等边三角。 我们的证据纯粹是几何和基本的。 我们还在翻译和离散旋转$\pi/2$和$2\pi/3$的倍数下, 给长度2 的闭合曲线的圆形覆盖范围。 我们显示, $\pi/2$的多倍的离散旋转覆盖范围最小, 这是比 1 小的等边三角, 并且推测覆盖是最小区域的圆形覆盖。 最后, 我们给出最小区域的圆形覆盖范围覆盖了所有在翻译和离散旋转$kge 3美元下的所有单项的最小区域曲线 2\pi/k$。