Sequences of numbers (either natural integers, or integers or rational) of level $k \in \mathbb{N}$ have been defined in \cite{Fra05,Fra-Sen06} as the sequences which can be computed by deterministic pushdown automata of level $k$. This definition has been extended to sequences of {\em words} indexed by {\em words} in \cite{Sen07,Fer-Mar-Sen14}. We characterise here the sequences of level 3 as the compositions of two HDT0L-systems. Two applications are derived: - the sequences of rational numbers of level 3 are characterised by polynomial recurrences - the equality problem for sequences of rational numbers of level 3 is decidable.
翻译:暂无翻译