We present Fortuna, an open-source library for uncertainty quantification in deep learning. Fortuna supports a range of calibration techniques, such as conformal prediction that can be applied to any trained neural network to generate reliable uncertainty estimates, and scalable Bayesian inference methods that can be applied to Flax-based deep neural networks trained from scratch for improved uncertainty quantification and accuracy. By providing a coherent framework for advanced uncertainty quantification methods, Fortuna simplifies the process of benchmarking and helps practitioners build robust AI systems.
翻译:我们提出了Fortuna,这是一个开放源码库,用于在深层学习中对不确定性进行量化。Fortuna支持一系列校准技术,例如可用于任何受过训练的神经网络的一致预测,以得出可靠的不确定性估计,以及可用于基于银河的深层神经网络的可缩放贝叶斯推论方法,这些方法从零开始经过培训,以改进不确定性的量化和准确性。通过为先进的不确定性量化方法提供一个连贯的框架,Fortuna简化了基准制定过程,并帮助从业人员建立健全的AI系统。