The recent release of the third generation partnership project, Release 17, calls for sub-meter cellular positioning accuracy with reduced latency in calculation. To provide such high accuracy on a worldwide scale, leveraging the received signal strength (RSS) for positioning promises ubiquitous availability in the current and future equipment. RSS Fingerprint-based techniques have shown a great potential for providing high accuracy in both indoor and outdoor environments. However, fingerprint-based positioning faces the challenge of providing a fast matching algorithm that can scale worldwide. In this paper, we propose a cosine similarity-based quantum algorithm for enabling fingerprint-based high accuracy and worldwide positioning that can be integrated with the next generation of 5G and 6G networks and beyond. By entangling the test RSS vector with the fingerprint RSS vectors, the proposed quantum algorithm has a complexity that is exponentially better than its classical version as well as the state-of-the-art quantum fingerprint positioning systems, both in the storage space and the running time. We implement the proposed quantum algorithm and evaluate it in a cellular testbed on a real IBM quantum machine. Results show the exponential saving in both time and space for the proposed quantum algorithm while keeping the same positioning accuracy compared to the traditional classical fingerprinting techniques and the state-of-the-art quantum algorithms.
翻译:暂无翻译