Given its vast application on online social networks, Influence Maximization (IM) has garnered considerable attention over the last couple of decades. Due to the intricacy of IM, most current research concentrates on estimating the first-order contribution of the nodes to select a seed set, disregarding the higher-order interplay between different seeds. Consequently, the actual influence spread frequently deviates from expectations, and it remains unclear how the seed set quantitatively contributes to this deviation. To address this deficiency, this work dissects the influence exerted on individual seeds and their higher-order interactions utilizing the Sobol index, a variance-based sensitivity analysis. To adapt to IM contexts, seed selection is phrased as binary variables and split into distributions of varying orders. Based on our analysis with various Sobol indices, an IM algorithm dubbed SIM is proposed to improve the performance of current IM algorithms by over-selecting nodes followed by strategic pruning. A case study is carried out to demonstrate that the explanation of the impact effect can dependably identify the key higher-order interactions among seeds. SIM is empirically proved to be superior in effectiveness and competitive in efficiency by experiments on synthetic and real-world graphs.
翻译:给定其在在线社交网络上的广泛应用,影响最大化(IM)在过去的几十年里引起了相当大的关注。由于IM的复杂性,大多数现有的研究都集中在估计节点的一阶贡献以选择种子集,而忽略了不同种子之间的高阶相互作用。因此,实际影响传播经常偏离预期,仍然不清楚种子集如何量化地对此偏差做出贡献。为了解决这个问题,本文利用Sobol指数进行了影响在个体种子和它们的高阶交互作用上的剖析,这是一种基于方差的敏感性分析。为了适应IM背景,种子选择被表述为二进制变量并分为不同阶的分布。基于不同的Sobol指数的分析,提出了一种IM算法SIM,该算法通过过选择节点后进行战略性修剪来改进当前IM算法的性能。进行了案例研究以证明影响效果的解释可以可靠地识别种子之间的关键高阶交互作用。通过对合成和真实世界图进行实验,证明SIM在效率上具有优越性并具有竞争性。