Recently, an interesting phenomenon called grokking has gained much attention, where generalization occurs long after the models have initially overfitted the training data. We try to understand this seemingly strange phenomenon through the robustness of the neural network. From a robustness perspective, we show that the popular $l_2$ weight norm (metric) of the neural network is actually a sufficient condition for grokking. Based on the previous observations, we propose perturbation-based methods to speed up the generalization process. In addition, we examine the standard training process on the modulo addition dataset and find that it hardly learns other basic group operations before grokking, for example, the commutative law. Interestingly, the speed-up of generalization when using our proposed method can be explained by learning the commutative law, a necessary condition when the model groks on the test dataset. We also empirically find that $l_2$ norm correlates with grokking on the test data not in a timely way, we propose new metrics based on robustness and information theory and find that our new metrics correlate well with the grokking phenomenon and may be used to predict grokking.
翻译:暂无翻译