In this paper, we aim to solve the high dimensional stochastic optimal control problem from the view of the stochastic maximum principle via deep learning. By introducing the extended Hamiltonian system which is essentially an FBSDE with a maximum condition, we reformulate the original control problem as a new one. Three algorithms are proposed to solve the new control problem. Numerical results for different examples demonstrate the effectiveness of our proposed algorithms, especially in high dimensional cases. And an important application of this method is to calculate the sub-linear expectations, which correspond to a kind of fully nonlinear PDEs.
翻译:在本文中,我们的目标是通过深层学习,从随机最大原理的角度解决高维随机最佳控制问题。通过引入扩展的汉密尔顿系统(基本上是一个具有最大条件的FBSDE),我们将原始控制问题改写为一个新的控制问题。提出了三种算法来解决新的控制问题。不同例子的数值结果显示了我们提议的算法的有效性,特别是在高维情况下。这种方法的一个重要应用是计算子线性预期,这与某种完全非线性PDE相对应。