We propose an interdisciplinary framework, Bayesian formal predictive model checking (Bayes FPMC), which combines Bayesian predictive inference, a well established tool in statistics, with formal verification methods rooting in the computer science community. Bayesian predictive inference allows for coherently incorporating uncertainty about unknown quantities by making use of methods or models that produce predictive distributions which in turn inform decision problems. By formalizing these problems and the corresponding properties, we can use spatio-temporal reach and escape logic to probabilistically assess their satisfaction. This way, competing models can directly be ranked according to how well they solve the actual problem at hand. The approach is illustrated on an urban mobility application, where the crowdedness in the center of Milan is proxied by aggregated mobile phone traffic data. We specify several desirable spatio-temporal properties related to city crowdedness such as a fault tolerant network or the reachability of hospitals. After verifying these properties on draws from the posterior predictive distributions, we compare several spatio-temporal Bayesian models based on their overall and property-based predictive performance.


翻译:我们提议了一个跨学科框架,即巴伊西亚正式预测模型检查(Bayesian FPMC),它将巴伊西亚预测性预测性推断(Bayesian 预测性预测性推断)(Bayesian 预测性预测性推断)(Bayesian PFMC)(Bayesian 正式预测性模型检查)(Bayesian 正式预测性模型检查)(Bayesian PFMMC)(Bayesian ) (Bayesian ) (Bayesian 正式预测性预测性推断)(Bayesian ) (Bayesian) (Bayesian) (Bayesian 预测性预测性推断) (Bayesian) (Bayesian) (Payesian) (Bayesian) (Bayesian) (Bayesian) (Bayesian) (Preg) (Proach) ) (Blority ) (Broad ) (Baytermanage ) (Baytal-sproad) (Byester) (Byester) (Base) (Base) (Bays) (Bays) (Byesterg) (Bayst) (Bayt) (Bayt) (Byesh) (Bayson) (Bays) (Bayst) (Byesterm) (By) (Bays) (By) (Bours) (By) (Bours) (By) (Bours) (Bours) (Bours) (By) (By) (By) (Bays) (By) (By) (Bays) (By) (By) (By) (By) (By) (By) (By) (By) (Bour) (By) (By) (By) (By) (By) (By)) (By) (By) (Bet) (Bet) (Bal) (By) (By) (Bal) (Bre) (Bre) (Brog) (By) (Bre) (B

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
9+阅读 · 2019年11月15日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月25日
VIP会员
相关资讯
已删除
将门创投
9+阅读 · 2019年11月15日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员