In this paper, we study the class of asynchronous non-uniform cellular automata (ANUCA) over an arbitrary group universe with multiple local transition rules. We define the notion of stable injectivity and stable post-surjectivity and investigate several dynamical properties of such automata. In particular, we establish generalizations of the celebrated surjunctivity theorem of Gromov-Weiss as well as the dual-surjunctivity theorem of Capobianco-Kari-Taati for cellular automata to the larger class of ANUCA over sofic universes.
翻译:在本文中,我们研究一个具有多重本地过渡规则的任意群体宇宙中的非同步非统一蜂窝自动自成一体(ANUCA)的等级,我们界定了稳定的射入和稳定的自成一体后自成一体的概念,并调查了这种自成一体的自动自成一体的几种动态特性。特别是,我们确立了格罗莫夫-魏斯著名的副平行理论的概括性,以及Capobianco-Kari-Taaati的双重兼生理论,以用于蜂窝自成一体的自成一体的自成一体的自成一体(CANUCA)相对于较大型的苏菲宇宙的平行理论的概括性。