Constraint handling is one of the most influential aspects of applying metaheuristics to real-world applications, which can hamper the search progress if treated improperly. In this work, we focus on a particular case - the box constraints, for which many boundary constraint handling methods (BCHMs) have been proposed. We call for the necessity of studying the impact of BCHMs on metaheuristics' performance and behavior, which receives seemingly little attention in the field. We target quantifying such impacts through systematic benchmarking by investigating 28 major variants of Differential Evolution (DE) taken from the modular DE framework (by combining different mutation and crossover operators) and $13$ commonly applied BCHMs, resulting in $28 \times 13 = 364$ algorithm instances after pairing DE variants with BCHMs. After executing the algorithm instances on the well-known BBOB/COCO problem set, we analyze the best-reached objective function value (performance-wise) and the percentage of repaired solutions (behavioral) using statistical ranking methods for each combination of mutation, crossover, and BBOB function group. Our results clearly show that the choice of BCHMs substantially affects the empirical performance as well as the number of generated infeasible solutions, which allows us to provide general guidelines for selecting an appropriate BCHM for a given scenario.


翻译:对现实世界应用计量经济学是最有影响力的方面之一,在实际应用中应用计量经济学,如果处理不当,可能会妨碍搜索进展。在这项工作中,我们侧重于一个特定案例,即框框限制,为此提出了许多边界限制处理方法(BCHMs),我们呼吁必须研究BCHMs对计量经济学业绩和行为的影响,在外地似乎很少受到注意。我们的目标是通过系统基准来量化这些影响,方法是通过调查从模块化框架(DE)中取出的28种差异演化(DE)主要变异(通过将不同的变异和交叉操作者合并)和通常应用的13美元BCHMs,结果导致28\时间13=364美元的算法例,然后将DE变量与BCHMs配对。在著名的BBBB/CO问题集执行算法后,我们分析了最接近的目标函数值(业绩)和修复解决方案(bhavioral)的百分比,方法是使用组合、交叉和BBBBBB函数组的统计分级方法,我们的结果清楚地表明BCHMA选择了一种适当的业绩,这是我们所选择的大致选择的一种做法。

0
下载
关闭预览

相关内容

专知会员服务
82+阅读 · 2021年5月10日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月4日
Arxiv
0+阅读 · 2021年7月2日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员