This paper proposes a novel primal heuristic for Mixed Integer Programs, by employing machine learning techniques. Mixed Integer Programming is a general technique for formulating combinatorial optimization problems. Inside a solver, primal heuristics play a critical role in finding good feasible solutions that enable one to tighten the duality gap from the outset of the Branch-and-Bound algorithm (B&B), greatly improving its performance by pruning the B&B tree aggressively. In this paper, we investigate whether effective primal heuristics can be automatically learned via machine learning. We propose a new method to represent an optimization problem as a graph, and train a Graph Convolutional Network on solved problem instances with known optimal solutions. This in turn can predict the values of decision variables in the optimal solution for an unseen problem instance of a similar type. The prediction of variable solutions is then leveraged by a novel configuration of the B&B method, Probabilistic Branching with guided Depth-first Search (PB-DFS) approach, aiming to find (near-)optimal solutions quickly. The experimental results show that this new heuristic can find better primal solutions at a much earlier stage of the solving process, compared to other state-of-the-art primal heuristics.
翻译:本文通过使用机器学习技术,为混合整形程序提出了一个全新的原始外观。 混合整形编程是一种制定组合优化问题的一般技术。 在一个求解器中, 原始超常在寻找良好的可行解决方案方面发挥着关键作用, 使一个人能够从分支和组合算法( B&B) 一开始就缩小双向差距, 通过积极修剪 B&B 树来大大改进它的性能。 在本文中, 我们研究是否可以通过机器学习自动学习来学习有效的初经杂交。 我们提出了一个新的方法, 将优化问题作为图解, 并用已知的最佳解决方案来训练一个图表革命网络。 这反过来可以预测一个类似类型未知问题的最佳解决方案中决定变量的价值。 然后, 通过对 B&B 方法的新型配置, 以引导的深度第一搜索( PB- DFS) 方法的不稳定性分流, 来利用这个方法来快速找到( 早期) 最优化的解决方案。 我们的实验结果显示, 这个新超常态的初步解决方案可以在早期找到更好的原始解决方案。