This work presents a mitosis detection method with only one vanilla Convolutional Neural Network (CNN). Our method consists of two steps: given an image, we first apply a CNN using a sliding window technique to extract patches that have mitoses; we then calculate each extracted patch's class activation map to obtain the mitosis's precise location. To increase the model performance on high-domain-variance pathology images, we train the CNN with a data augmentation pipeline, a noise-tolerant loss that copes with unlabeled images, and a multi-rounded active learning strategy. In the MIDOG 2022 challenge, our approach, with an EfficientNet-b3 CNN model, achieved an overall F1 score of 0.7323 in the preliminary test phase, and 0.6847 in the final test phase (task 1). Our approach sheds light on the broader applicability of class activation maps for object detections in pathology images.
翻译:这项工作展示了一种分离检测方法,只有一个香草革命神经网络(CNN) 。 我们的方法由两步组成: 给一个图像, 我们首先使用一个有线电视新闻网, 使用滑动窗口技术来提取有线网的补丁; 然后计算每个提取的补丁类激活地图, 以获得短网的确切位置 。 为了提高高常态病理图的模型性能, 我们用数据增强管道对有线电视新闻网进行培训, 一种应对无标签图像的噪音耐受损失, 以及一种多轮式积极学习战略 。 在MIDOG 2022 挑战中, 我们的方法, 以高效的Net-b3CNN模型, 在初步测试阶段取得了0. 7323的F1分, 在最终测试阶段( 任务1) 0. 6847分的F1分, 我们的方法揭示了在病理图像中用于对象探测的班级启动地图的更广泛适用性。