We consider a transmitter-receiver pair in a slotted-time system. The transmitter observes a dynamic source and sends updates to a remote receiver through an error-free communication channel that suffers a random delay. We consider two cases. In the first case, the update is guaranteed to be delivered within a certain number of time slots. In the second case, the update is immediately discarded once the transmission time exceeds a predetermined value. The receiver estimates the state of the dynamic source using the received updates. In this paper, we adopt the Age of Incorrect Information (AoII) as the performance metric and investigate the problem of optimizing the transmitter's action in each time slot to minimize AoII. We first characterize the optimization problem using the Markov decision process and investigate the performance of the threshold policy, under which the transmitter transmits updates only when the transmission is allowed and the AoII exceeds the threshold $\tau$. By delving into the characteristics of the system evolution, we precisely compute the expected AoII achieved by the threshold policy using the Markov chain. Then, we prove that the optimal policy exists and provide a computable relative value iteration algorithm to estimate the optimal policy. Furthermore, by leveraging the policy improvement theorem, we theoretically prove that, under an easily verifiable condition, the optimal policy is the threshold policy with $\tau=1$. Finally, numerical results are presented to highlight the performance of the optimal policy.
翻译:我们在一个时间档系统中考虑一个发报机接收器配对。 发报机观察动态源, 并通过一个随机延迟的无误通信频道向远程接收器发送更新信息。 我们考虑两个案例。 在第一个案例中, 保证更新在一定时间档内提供。 在第二个案例中, 一旦传输时间超过预定值, 更新就会立即被丢弃。 接收机使用收到的最新信息来估计动态源的状态。 在本文中, 我们采用不正确的信息时代( AoII) 作为性能衡量标准, 并调查每个时档优化发报机行动以尽量减少AoII的问题。 我们首先使用马尔科夫决定程序来说明优化问题, 并调查阈限政策的业绩表现。 只有在传输时间档允许时, 且 AoII 超过门槛值时, 更新就会立即被丢弃。 通过分解系统演变的特性, 我们精确地将预期的AoII 用于使用 Markov 链 的阈值政策, 我们证明最佳政策存在, 并且提供了一个最佳的 最佳的 最佳的 最优化的 政策 。