The control of collective robotic systems, such as drone swarms, is often delegated to autonomous navigation algorithms due to their high dimensionality. However, like other robotic entities, drone swarms can still benefit from being teleoperated by human operators, whose perception and decision-making capabilities are still out of the reach of autonomous systems. Drone swarm teleoperation is only at its dawn, and a standard human-swarm interface (HRI) is missing to date. In this study, we analyzed the spontaneous interaction strategies of naive users with a swarm of drones. We implemented a machine-learning algorithm to define a personalized Body-Machine Interface (BoMI) based only on a short calibration procedure. During this procedure, the human operator is asked to move spontaneously as if they were in control of a simulated drone swarm. We assessed that hands are the most commonly adopted body segment, and thus we chose a LEAP Motion controller to track them to let the users control the aerial drone swarm. This choice makes our interface portable since it does not rely on a centralized system for tracking the human body. We validated our algorithm to define personalized HRIs for a set of participants in a realistic simulated environment, showing promising results in performance and user experience. Our method leaves unprecedented freedom to the user to choose between position and velocity control only based on their body motion preferences.


翻译:集体机器人系统(如无人机群)的控制往往被委托给自主导航算法(如无人机群 ) 。 然而,与其他机器人实体一样,无人机群仍然可以受益于由人类操作者进行远程操作,而人类操作者的认识和决策能力仍然超出自主系统的范围。无人机群群和电磁场操作只是在黎明时方能,迄今还缺少一个标准的人类-暖界面(HRI ) 。在这项研究中,我们分析了天真用户与无人机群的自发互动战略。我们采用了机器学习算法来定义个性化的身体-海洋界面(BoMI ), 仅仅基于一个短暂的校准程序。在此过程中,人类操作者被要求自发行动起来, 好像他们控制了模拟无人机群。我们估计手是最常用的身体部分,因此我们选择了一个LEAP Motion控制器来跟踪他们,让用户控制空中无人机群。这个选择使我们的接口是可移植的,因为它并不依赖一个中央系统来跟踪人体机体的定位位置。我们用人机体模型选择了一种具有可预见性速度的模型,我们用户选择了一种具有可喜地选择的方法。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Arxiv
6+阅读 · 2018年6月21日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2018年3月22日
VIP会员
相关资讯
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员