项目名称: 离子输运-物理老化-变形耦合时聚合物复合材料固态电解质的松弛行为

项目编号: No.11472164

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 胡宏玖

作者单位: 上海大学

项目金额: 88万元

中文摘要: 无机颗粒填充的高聚物是新一代锂离子电池不可或缺的固态电解质材料,其物理力学性能将受到电池系统多场环境的显著影响。本项目根据离子输运、物理老化和变形耦合下聚合物复合材料的微观结构变化,基于连续介质力学框架与内变量理论,结合Cahn-Hilliard扩散理论,计及无机颗粒/聚合物的界面能,建立关于自由体积、离子浓度、应力和温度等宏观控制变量的完整动力学方程组;根据热力学原理和材料行为特征,获得多物理场作用时固态电解质材料的自由体积演化方程和本构关系;研究宏观特征量与代表体积元相关微结构演化量的定量关系,系统分析微纳颗粒与锂盐含量、应力和电解质薄膜厚度对物理老化速率的影响,研究不同充放电条件时玻璃态聚合物的粘弹特性,发展复合材料电解质长期物理力学性能的理论预测方法;探索固态电解质结构松弛行为与电池循环性能的内在联系,为先进聚合物复合材料全固态二次电池的优化设计与利用提供理论支撑。

中文关键词: 聚合物;物理老化;粘弹性;复合材料;本构方程

英文摘要: Polymer composites will be used as solid electrolytes in next-generation batteries, which physico-mechanical properties are influenced by multi-physics field during practical application. This project will explore the evolution of the micro-structure of polymer composites under ion diffusion, physical aging and stress. Moreover, the free volume evolution equation and constitutive relation will be developed in the frame of continuum mechanics and internal variable theory. Further, the relations between macroscopic characteristics and microcosmic state parameter are described, and the effect of nano-filler contents, film thickness, stress and charge conditions on physical aging rate are studied, to establish a theory for predicting the mechanical and electrical performances. In order to provide theoretical foundations for the optimization design and recycling of batteries, the effects of structure relaxation of solid polymer electrolytes on capacity fade in cells will be investigated.

英文关键词: polymer;physical aging;viscoelasticity;composites;constitutive relation

成为VIP会员查看完整内容
0

相关内容

【Chen Guanyi博士论文】汉语名词短语的计算生成,282页pdf
深度学习在路由问题中的最新进展
专知会员服务
18+阅读 · 2022年3月6日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
104+阅读 · 2021年8月23日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
12+阅读 · 2020年12月10日
小贴士
相关主题
相关VIP内容
【Chen Guanyi博士论文】汉语名词短语的计算生成,282页pdf
深度学习在路由问题中的最新进展
专知会员服务
18+阅读 · 2022年3月6日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
104+阅读 · 2021年8月23日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
相关资讯
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员