Kernel two-sample tests have been widely used and the development of efficient methods for high-dimensional large-scale data is gaining more and more attention as we are entering the big data era. However, existing methods, such as the maximum mean discrepancy (MMD) and recently proposed kernel-based tests for large-scale data, are computationally intensive to implement and/or ineffective for some common alternatives for high-dimensional data. In this paper, we propose a new test that exhibits high power for a wide range of alternatives. Moreover, the new test is more robust to high dimensions than existing methods and does not require optimization procedures for the choice of kernel bandwidth and other parameters by data splitting. Numerical studies show that the new approach performs well in both synthetic and real world data.


翻译:随着我们进入大数据时代,对高维大型数据的高效方法的开发正日益受到越来越多的注意,但现有方法,如最大平均差异(MMD)和最近提议的大规模数据内核测试,在计算上十分密集,以实施高维数据的某些通用替代品和(或)无效。在本文中,我们提议一项新的测试,为多种替代品展示出高功率。此外,新的测试比现有方法更加强大,不要求通过数据分离选择内核带宽和其他参数的优化程序。数字研究显示,新的方法在合成数据和真实世界数据中都表现良好。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月29日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月24日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年11月29日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月24日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
7+阅读 · 2018年6月8日
Top
微信扫码咨询专知VIP会员