An important limitation of standard multiple testing procedures is that the null distribution should be known. Here, we consider a null distribution-free approach for multiple testing in the following semi-supervised setting: the user does not know the null distribution, but has at hand a sample drawn from this null distribution. In practical situations, this null training sample (NTS) can come from previous experiments, from a part of the data under test, from specific simulations, or from a sampling process. In this work, we present theoretical results that handle such a framework, with a focus on the false discovery rate (FDR) control and the Benjamini-Hochberg (BH) procedure. First, we provide upper and lower bounds for the FDR of the BH procedure based on empirical $p$-values. These bounds match when $\alpha (n+1)/m$ is an integer, where $n$ is the NTS sample size and $m$ is the number of tests. Second, we give a power analysis for that procedure suggesting that the price to pay for ignoring the null distribution is low when $n$ is sufficiently large in front of $m$; namely $n\gtrsim m/(\max(1,k))$, where $k$ denotes the number of ``detectable'' alternatives. Third, to complete the picture, we also present a negative result that evidences an intrinsic transition phase to the general semi-supervised multiple testing problem {and shows that the empirical BH method is optimal in the sense that its performance boundary follows this transition phase}. Our theoretical properties are supported by numerical experiments, which also show that the delineated boundary is of correct order without further tuning any constant. Finally, we demonstrate that our work provides a theoretical ground for standard practice in astronomical data analysis, and in particular for the procedure proposed in \cite{Origin2020} for galaxy detection.


翻译:标准多重测试程序的一个重要限制是, 不存在分配 。 在此, 我们考虑在以下半监督环境下对多重测试采用无效分配方法 : 用户不知道无分配, 但手头有从此无分配的样本 。 在实际情况下, 这个无效培训样本可以来自先前的实验, 来自测试中数据的一部分, 来自特定模拟, 或来自抽样过程 。 在此工作中, 我们展示处理此框架的理论结果, 重点是虚假的发现率( FDR) 控制和 Benjami- Hochberg (BH) 程序。 首先, 我们为基于实证 $- p$ 的 BH 程序的 FDR 提供上下边框 。 在实际情况下, 当 $\ alpha (n+1) / m 美元是整数时, 也就是NTS 样本大小, 或 $20 美元是提议的测试数量 。 其次, 我们为这个程序提供无视无效分配的价格是低的 $n- O) 和 bential 的内值 。 。 在 解算法中, 也显示直数的轨中, 。 直数 直径 。 直值 。 。 直值 直值 。 直值 直值 直值 直值 直值 解到直到直到直到直到直到直值 。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
50+阅读 · 2020年12月14日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月25日
Deep Co-Training for Semi-Supervised Image Segmentation
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
50+阅读 · 2020年12月14日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员