Peskin's Immersed Boundary (IB) model and method are among the most popular modeling tools and numerical methods. The IB method has been known to be first order accurate in the velocity. However, almost no rigorous theoretical proof can be found in the literature for Stokes equations with a prescribed velocity boundary condition. In this paper, it has been shown that the pressure of the Stokes equation has convergence order $O(\sqrt{h})$ in the $L^2$ norm while the velocity has $O(h)$ convergence in the infinity norm in two-dimensions (2D). The proofs are based on the idea of the immersed interface method, and the convergence proof of the IB method for elliptic interface problems \cite{li:mathcom}. The proof is intuitive and the conclusion can apply to different boundary conditions as long as the problem is well-posed. The proof process also provides an efficient way to decouple the system into three Helmholtz/Poisson equations without affecting the accuracy. A non-trivial numerical example is also provided to confirm the theoretical analysis.
翻译:Peskin 的 Immersed 边界模型和方法是最受欢迎的模型和数字方法之一。 IB 方法在速度上已知为第一顺序精确。 然而, 在带有指定速度边界条件的 Stokes 方程式文献中几乎找不到严格的理论证据。 本文显示, Stokes 方程式的压力在 $O (\ sqrt{h}) 规范中为 $O (h) $ 2, 而速度在 两次二位数中在 无限标准中为 $O (h) $ (2D) 趋同 。 证据基于 沉浸界面法的理念, 以及 IB 方程式对 椭圆界面问题的趋同证据 \ cite li:math}com。 证据是直观的, 并且只要问题得到妥善处理, 其结论可以适用于不同的边界条件。 证据过程也提供了一种有效的方法, 将系统解结为三个 Helmoltz/ Poisson 方程式, 而不影响精确性分析。 提供的非三例的示例是, 。