The convex body chasing problem, introduced by Friedman and Linial, is a competitive analysis problem on any normed vector space. In convex body chasing, for each timestep $t\in\mathbb N$, a convex body $K_t\subseteq \mathbb R^d$ is given as a request, and the player picks a point $x_t\in K_t$. The player aims to ensure that the total distance $\sum_{t=0}^{T-1}||x_t-x_{t+1}||$ is within a bounded ratio of the smallest possible offline solution. In this work, we consider the nested version of the problem, in which the sequence $(K_t)$ must be decreasing. For Euclidean spaces, we consider a memoryless algorithm which moves to the so-called Steiner point, and show that in a certain sense it is exactly optimal among memoryless algorithms. For general finite dimensional normed spaces, we combine the Steiner point and our recent previous algorithm to obtain a new algorithm which is nearly optimal for all $\ell^p_d$ spaces with $p\geq 1$, closing a polynomial gap.


翻译:由 Friedman 和 Linial 介绍的 convex 身体追寻问题是一个对任何规范矢量空间的竞争性分析问题。 在对每个时间步 $t\ pin\ mathbN$ 追逐的 convex 体 $K_ t\ subseteq\ mathbb R da$ d$ 的请求中, 给出了一个 convex 身体, 玩家选择了一个点 $x_ t\ k_ t\ k_ t\ t\ k_ t\ t\ t+1 $。 玩家旨在确保总距离 $\ sum_\ t= 0\ t-1\ x\ t- x ⁇ t+1 $ 在最小可能的离线解决方案的结合率范围内。 在这项工作中, 我们考虑的问题嵌套版本, 其序列 $( k_ t) 必须减少 。 对于 Euclidean 空间, 我们考虑一个无记忆的算法, 移动到所谓的 Steiner 点在不记忆的算法中是完全最佳的。 对于一般的尺寸标准规范空间, 我们把 Steiner 点和我们以前的算法结合了我们最近的新的算算法 以获得一个新的算算法 $@ lial$%_ d_ d.

0
下载
关闭预览

相关内容

【2021新书】机器学习超参数优化,177页pdf
专知会员服务
162+阅读 · 2021年5月18日
图计算加速架构综述
专知会员服务
50+阅读 · 2021年4月5日
专知会员服务
43+阅读 · 2021年2月8日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
54+阅读 · 2020年11月3日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
【TED】以新的角度思考从女人到母亲的转变
英语演讲视频每日一推
9+阅读 · 2019年1月8日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月8日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
【2021新书】机器学习超参数优化,177页pdf
专知会员服务
162+阅读 · 2021年5月18日
图计算加速架构综述
专知会员服务
50+阅读 · 2021年4月5日
专知会员服务
43+阅读 · 2021年2月8日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
54+阅读 · 2020年11月3日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
【TED】以新的角度思考从女人到母亲的转变
英语演讲视频每日一推
9+阅读 · 2019年1月8日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员