The \textsc{Arbitrary Pattern Formation} (\textsc{Apf}) is a widely studied in distributed computing for swarm robots. This problem asks to design a distributed algorithm that allows a team of identical, autonomous mobile robots to form any arbitrary pattern given as input. This paper considers that the robots are operating on a two-dimensional infinite grid. Robots are initially positioned on distinct grid points forming an asymmetric configuration (no two robots have the same snapshot). They operate under a fully asynchronous scheduler and do not have any access to a global coordinate system, but they will align the axes of their local coordinate systems along the grid lines. The previous work dealing with \textsc{Apf} problem solved it in $O(\mathcal{D}^2k)$ robot movements under similar conditions, where $\mathcal{D}$ is the side of the smallest square that can contain both initial and target configuration and, $k$ is the number of robots. Let $\mathcal{D}'=\max\{\mathcal{D},k\}$. This paper presents two algorithms of \textsc{Apf} on an infinite grid. The first algorithm solves the \textsc{Apf} problem using $O(\mathcal{D}')$ asymptotically move optimal. The second algorithm solves the \textsc{Apf} problem in $O(\mathcal{D}')$ epochs, which we show is asymptotically optimal.
翻译:\ textsc{ 任意模式格式化} (\ textsc{ Apf}) 是一个在分布式计算群集机器人时广泛研究的 。 这个问题要求设计一个分布式算法, 允许由相同、 自主的移动机器人组成的团队形成任意模式, 作为输入。 本文认为, 机器人是在二维无限的网格上运行的。 机器人最初位于形成不对称配置的不同网格点上( 没有两个机器人拥有相同的快照 ) 。 它们运行在一个完全不固定的调度器下, 没有进入全球协调系统的任何权限, 但是它们会按照网格线调整本地协调系统的轴。 之前处理 相同、 自动移动的机器人组成的团队, 在类似的条件下 $ (mathcal{ D% 2k) 的机器人移动。 $\ mathcal{ Dmax} 问题是最小的方格, 可以同时包含初始和目标配置, $k$美元是最佳的方位数 。 请 $\\ dalc\\\ axx mologis 。