We propose a novel approach to multimodal sensor fusion for Ambient Assisted Living (AAL) which takes advantage of learning using privileged information (LUPI). We address two major shortcomings of standard multimodal approaches, limited area coverage and reduced reliability. Our new framework fuses the concept of modality hallucination with triplet learning to train a model with different modalities to handle missing sensors at inference time. We evaluate the proposed model on inertial data from a wearable accelerometer device, using RGB videos and skeletons as privileged modalities, and show an improvement of accuracy of an average 6.6% on the UTD-MHAD dataset and an average 5.5% on the Berkeley MHAD dataset, reaching a new state-of-the-art for inertial-only classification accuracy on these datasets. We validate our framework through several ablation studies.
翻译:我们建议采用新颖的办法,利用特许信息(LUPI)进行多式联运感应聚合,利用特许信息(AAL)进行学习。我们解决了标准多式联运方法的两个主要缺陷,即有限的区域覆盖面和可靠性的降低。我们的新框架将模式幻觉概念与三重学习结合起来,以培训一种模式,以不同的方式处理在推论时间丢失的传感器。我们用RGB视频和骨架作为特许模式,评估了从磨损加速计装置获得的惯性数据的拟议模型,并显示UTD-MHAD数据集平均6.6%的准确性有所提高,伯克利MHAD数据集平均5.5%的准确性有所提高,这些数据集的惯性分类精确性达到了新的水平。我们通过几项通缩研究验证了我们的框架。