We investigate sublinear-time algorithms that take partially erased graphs represented by adjacency lists as input. Our algorithms make degree and neighbor queries to the input graph and work with a specified fraction of adversarial erasures in adjacency entries. We focus on two computational tasks: testing if a graph is connected or $\varepsilon$-far from connected and estimating the average degree. For testing connectedness, we discover a threshold phenomenon: when the fraction of erasures is less than $\varepsilon$, this property can be tested efficiently (in time independent of the size of the graph); when the fraction of erasures is at least $\varepsilon,$ then a number of queries linear in the size of the graph representation is required. Our erasure-resilient algorithm (for the special case with no erasures) is an improvement over the previously known algorithm for connectedness in the standard property testing model and has optimal dependence on the proximity parameter $\varepsilon$. For estimating the average degree, our results provide an "interpolation" between the query complexity for this computational task in the model with no erasures in two different settings: with only degree queries, investigated by Feige (SIAM J. Comput. `06), and with degree queries and neighbor queries, investigated by Goldreich and Ron (Random Struct. Algorithms `08) and Eden et al. (ICALP `17). We conclude with a discussion of our model and open questions raised by our work.


翻译:我们调查的亚线性时间算法包含部分被删除的图表,这些图表以相邻列表作为输入。我们的算法对输入图进行程度和邻接查询,并在相邻条目中使用特定部分的对抗消化器。我们侧重于两个计算任务:测试一个图形是否连接,或者$$$varepsilon$远远离连接,并估计平均程度。测试连接时,我们发现一个阈值现象:当消化器的分数低于$\varepsilon值时,可以有效地测试这一属性(时间与图表大小无关);当消化器的分数至少为$\varepsilon,然后在相邻条目条目中使用一定部分的对角消化器。我们的缩-弹性算法(对于无缩格的特殊情况来说)比以前已知的标准属性测试模型连接值的算法有所改进,并且对接近值参数 $\varepslonlonlonlonlonlon。为了估计平均程度,我们的结果提供了“相互调” 讨论, 和“货币正际” 度的调” 和“货币” 调” 调” 和“货币” 调” 调的调的计算,我们通过不同的计算和“货币” 度, 我们的计算, 我们的计算和“货币” 和“货币” 的计算” 的计算,我们之间的调的计算,我们之间的测算的计算, 我们的计算,我们之间的测算的计算, 我们的计算,我们之间的测程的计算。我们之间的测程,通过不同的计算,通过不同的计算。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
339+阅读 · 2020年1月27日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Design and Analysis of Switchback Experiments
Arxiv
0+阅读 · 2021年1月14日
Arxiv
4+阅读 · 2019年2月8日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
339+阅读 · 2020年1月27日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员