Recent researches on robotics have shown significant improvement, spanning from algorithms, mechanics to hardware architectures. Robotics, including manipulators, legged robots, drones, and autonomous vehicles, are now widely applied in diverse scenarios. However, the high computation and data complexity of robotic algorithms pose great challenges to its applications. On the one hand, CPU platform is flexible to handle multiple robotic tasks. GPU platform has higher computational capacities and easy-touse development frameworks, so they have been widely adopted in several applications. On the other hand, FPGA-based robotic accelerators are becoming increasingly competitive alternatives, especially in latency-critical and power-limited scenarios. With specialized designed hardware logic and algorithm kernels, FPGA-based accelerators can surpass CPU and GPU in performance and energy efficiency. In this paper, we give an overview of previous work on FPGA-based robotic accelerators covering different stages of the robotic system pipeline. An analysis of software and hardware optimization techniques and main technical issues is presented, along with some commercial and space applications, to serve as a guide for future work.
翻译:最近对机器人的研究显示,从算法、机械学到硬件结构都有显著的改进。机器人,包括操纵器、脚步机器人、无人机和自主飞行器,现在被广泛应用于各种不同的情景中。然而,机器人算法的计算和数据复杂程度高,对其应用构成巨大挑战。一方面,CPU平台具有处理多种机器人任务的灵活度。GPU平台具有较高的计算能力和易于使用的开发框架,因此在一些应用中被广泛采用。另一方面,基于FPGA的机器人加速器正在变得日益具有竞争力,特别是在定位临界和限制电力的情景中。由于专门设计的硬件逻辑和算法内核,基于FPGA的加速器可以在性能和能效方面超过CPU和GPU。在本文中,我们概述了以前关于基于FPGA的机器人加速器的工作,覆盖了机器人系统管道的不同阶段。对软件和硬件优化技术和主要技术问题的分析,连同一些商业和空间应用,都作为未来工作的指南。